Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732925

RESUMEN

This work presents an approach for the recognition of plastics using a low-cost spectroscopy sensor module together with a set of machine learning methods. The sensor is a multi-spectral module capable of measuring 18 wavelengths from the visible to the near-infrared. Data processing and analysis are performed using a set of ten machine learning methods (Random Forest, Support Vector Machines, Multi-Layer Perceptron, Convolutional Neural Networks, Decision Trees, Logistic Regression, Naive Bayes, k-Nearest Neighbour, AdaBoost, Linear Discriminant Analysis). An experimental setup is designed for systematic data collection from six plastic types including PET, HDPE, PVC, LDPE, PP and PS household waste. The set of computational methods is implemented in a generalised pipeline for the validation of the proposed approach for the recognition of plastics. The results show that Convolutional Neural Networks and Multi-Layer Perceptron can recognise plastics with a mean accuracy of 72.50% and 70.25%, respectively, with the largest accuracy of 83.5% for PS plastic and the smallest accuracy of 66% for PET plastic. The results demonstrate that this low-cost near-infrared sensor with machine learning methods can recognise plastics effectively, making it an affordable and portable approach that contributes to the development of sustainable systems with potential for applications in other fields such as agriculture, e-waste recycling, healthcare and manufacturing.

2.
Curr Addict Rep ; 11(2): 287-298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606363

RESUMEN

Purpose of Review: The incorporation of digital technologies and their use in youth's everyday lives has been increasing rapidly over the past several decades with possible impacts on youth development and mental health. This narrative review aimed to consider how the use of digital technologies may be influencing brain development underlying adaptive and maladaptive screen-related behaviors. Recent Findings: To explore and provide direction for further scientific inquiry, an international group of experts considered what is known, important gaps in knowledge, and how a research agenda might be pursued regarding relationships between screen media activity and neurodevelopment from infancy through childhood and adolescence. While an understanding of brain-behavior relationships involving screen media activity has been emerging, significant gaps exist that have important implications for the health of developing youth. Summary: Specific considerations regarding brain-behavior relationships involving screen media activity exist for infancy, toddlerhood, and early childhood; middle childhood; and adolescence. Transdiagnostic frameworks may provide a foundation for guiding future research efforts. Translating knowledge gained into better interventions and policy to promote healthy development is important in a rapidly changing digital technology environment.

3.
Front Psychol ; 5: 512, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24904514

RESUMEN

Visual object recognition is of fundamental importance in our everyday interaction with the environment. Recent models of visual perception emphasize the role of top-down predictions facilitating object recognition via initial guesses that limit the number of object representations that need to be considered. Several results suggest that this rapid and efficient object processing relies on the early extraction and processing of low spatial frequencies (LSF). The present study aimed to investigate the SF content of visual object representations and its modulation by contextual and affective values of the perceived object during a picture-name verification task. Stimuli consisted of pictures of objects equalized in SF content and categorized as having low or high affective and contextual values. To access the SF content of stored visual representations of objects, SFs of each image were then randomly sampled on a trial-by-trial basis. Results reveal that intermediate SFs between 14 and 24 cycles per object (2.3-4 cycles per degree) are correlated with fast and accurate identification for all categories of objects. Moreover, there was a significant interaction between affective and contextual values over the SFs correlating with fast recognition. These results suggest that affective and contextual values of a visual object modulate the SF content of its internal representation, thus highlighting the flexibility of the visual recognition system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...